Symposium for the 30th Anniversary of the Montreal Protocol

The Impact of Laboratory Photochemistry on the Montreal Protocol

James B. Burkholder

Earth System Research Laboratory Chemical Sciences Division National Oceanic and Atmospheric Administration (NOAA) Boulder, CO USA

What is "Laboratory Photochemistry"?

The study of elementary chemical processes under controlled conditions (relevant to the atmosphere)

Reaction Rate Constants (OH, O(¹D), Cl, ...) UV Photolysis Rates Reaction Mechanisms Infrared Spectra

How is it Relevant to the Montreal Protocol?

Annex A, B, C, and F Compounds

CFCs, Halons, HCFCs, HBFCs, and HFCs

Replacement Compounds: HFOs

"The three-legged stool"

Building Blocks Honest Brokers of Information

Burkholder et al. "The Essential Role for Laboratory Studies in Atmospheric Chemistry" Environ. Sci. & Tech., 2017, 51, 2519-2528

Laboratory Studies \rightarrow Modeling \rightarrow Improved Understanding \rightarrow Informed Policy

Policy Relevant Metrics

Metric

Ozone Depletion Potential (ODP)

$$ODP_i = \frac{n_{Cl}}{3} \frac{f_i}{f_{CFC-11}} \frac{M_{CFC-11}}{M_i} \frac{\tau_i}{\tau_{CFC-11}}$$

Global Warming Potential (GWP)

$$GWP(T) = \frac{RE(\tau) \tau [1 - \exp(-T/\tau)]}{M_i Int RF_{CO_2}(T)}$$

Ozone Depletion Potential (ODP) Global Warming Potential (GWP)

Laboratory Measurement

CFCs, Halons, HCFCs, HBFCs, and HFCs (Annex A,B,C, and F) Replacement Compounds: HFOs

Why Study Individual Compounds in the Laboratory?

Composition and structure of a molecule influences its reactivity and photolysis (*lifetime*)

Burkholder et al., Chem. Rev., 2015

"Atmospheric degradation of ozone depleting substances, their substitutes, and related species"

Data Evaluation

Proposed Replacements

ClO Dimer (Cl₂O₂)

Catalytic Ozone Destruction Cycle

Molina and Molina (1987)

$Cl + O_3$	\rightarrow ClO + O ₂
ClO + ClO + M	\rightarrow Cl ₂ O ₂ + M
$Cl_2O_2 + hv$	\rightarrow Cl + ClOO
ClOO	\rightarrow Cl + O ₂

Net: $2O_3 + hv \rightarrow 3O_2$

$$J = \int \boldsymbol{\sigma}(\boldsymbol{\lambda}, \boldsymbol{T}) \, \boldsymbol{\phi}(\boldsymbol{\lambda}) \, F(\boldsymbol{\lambda}, \boldsymbol{Z}, \boldsymbol{SZA}) \, d\boldsymbol{\lambda}$$

Lab studies confirm importance of ClO dimer cycle

Pope et al. challenges understanding of polar ozone depletion chemistry

Labs responded, improve dataset, resolve discrepancy

Data Evaluation

Proposed Replacements

Data Evaluation

JPL Publication **15-10**

Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies

Evaluation Number 18

NASA Panel for Data Evaluation:

J. B. Burkholder Earth System Research Laboratory National Oceanic and Atmospheric Administration (NOAA)

J. P. D. Abbatt University of Toronto

R. E. Huie National Institute of Standards and Technology

M. J. Kurylo Goddard Earth Sciences, Technology and Research Program

D. M. Wilmouth Harvard University

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

October, 2015

S. P. Sander Jet Propulsion Laboratory California Institute of Technology

J. R. Barker University of Michigan

C. E. Kolb Aerodyne Research, Inc.

V. L. Orkin National Institute of Standards and Technology P. H. Wine

Georgia Institute of Technology

Data evaluations play an important role in atmospheric chemistry research; since the 1970s.

Recommendations of photochemical parameters for use in atmospheric models and laboratory studies

NASA Data Evaluation includes: 8 CFCs 17 HCFCs 13 Halons 28 HFCs 16 HFOs

Annex A: All Compounds

Annex B: CF_3Cl , CCl_4 , and $CH_3CCl_3(34)$

Annex C, Group I: 8 ** and 9 others (274)

Group II: CHF₂Br and CF₃CHFBr (274) *Group III*: CH₂BrCl (1)

Annex F: All Compounds

Data Evaluation

Recommendation

Reaction	Temperature Range of Exp.	A Factor	<i>EI</i> R	k(298 K) ^b	f(298 K)°	g	Note	1	
$0 + F0 \rightarrow F + O_2$	Data (K) = 298	2.7×10-11	0	2.7×10-11	3.0	250	E1		
$0 + FO_2 \rightarrow FO + O_2$	-	5.0×10-11	0	5.0×10-11	5.0		E 2		
$OH + CH_3F \rightarrow CH_2F + H_2O$	243-480	2.2×10-12	1400	2.0×10-14	1.1	150	E 3		
(HFC-41) OH + CH ₂ F ₂ \rightarrow CHF ₂ + H ₂ O (HFC-32)	220-492	1.7×10-12	1500	1.1×10-14	1.07	100	<u>E4</u>		
$OH + CHF_3 \rightarrow CF_3 + H_2O$ (HFC_23)	253-1663	6.1×10-13	2260	3.1×10-16	1.15	100	<u>E5</u>		
OH + CH ₃ CH ₂ F → products (HFC-161)	210-480	2.5×10-12	730	2.2×10-13	1.07	50	<u>E 6</u>		
OH + CH ₃ CHF ₂ → products (HEC-152a)	210-480	8.7×10-13	975	3.3×10-14	1.07	50	<u>E7</u>		
$OH + CH_2FCH_2F \rightarrow CHFCH_2F + H_2O$ (HFC-152)	210-480	1.05×10 ⁻¹²	710	9.7×10-14	1.07	100	<u>E8</u>	l	
$OH + CH_3CF_3 \rightarrow CH_2CF_3 + H_2O$ (HFC-143a)	261-425	1.07×10-12	2000	1.3×10-15	1.1	100	<u>E 9</u>	1	
OH + CH/ECHE	278-441	3.9×10 ⁻¹²	1620	1.7×10-14	1.2	200	E10		
OH + CH ₂ FCF ₃ \rightarrow CHFCF ₃ + H ₂ O (HFC-134a)	220-473	1.03×10 ⁻¹²	1620	4.5×10-15	1.1	100	<u>E11</u>		
(HFC-134) (HFC-134)	294-434	1.6×10 ⁻¹²	1660	6.1×10 ⁻¹⁵	12	000	EIZ		A 4 1
$OH + CHF_2CF_3 \rightarrow CF_2CF_3 + H_2O$ (HFC-125)	220-441	6.0×10-13	1700	2.0×10-15	1.1	100	<u>E13</u>		Atmospheric
OH + CH3CHFCH3 → products (HFC-281ea)	288-394	3.0×10 ⁻¹²	490	5.8×10-13	1.2	100	<u>E14</u>		Τ.Ο
$OH + CH_3CH_2CF_3 \rightarrow products$ (HFC-263fb)	238–375	3.7×10-12	1290	4.9×10-14	1.15	100	<u>E15</u>		Lifetime
$OH + CH_2FCF_2CHF_2 \rightarrow products$ (HFC-245ca)	260-365	2.1×10-12	1620	9.2×10-15	1.2	150	<u>E16</u>		
$OH + CH_3CF_2CF_3 \rightarrow products$ (HFC-245cb)	298-370	4.2×10-13	1680	1.5×10-15	1.1	200	<u>E17</u>		
OH + CHF ₂ CHFCHF ₂ → products (HFC-245ea)	238-375	1.53×10-12	1340	1.7×10-14	1.1	150	<u>E18</u>		13 1 yoong
OH + CH ₂ FCHFCF ₃ → products (HFC-245eb)	238-375	1.16×10-12	1260	1.7×10-14	1.15	100	<u>E19</u>		13.4 years
OH + CHF ₂ CH ₂ CF ₃ → products (HFC-245fa)	273-370	6.1×10 ⁻¹³	1330	7.0×10-15	1.15	100	<u>E20</u>		1 1 4 0 /
$OH + CH_2FCF_2CF_3 \rightarrow CHFCF_2CF_3 + H_2O$ (HFC-236cb)	251-314	1.03×10-12	1620	4.5×10-15	2.0	200	<u>E21</u>		± 14%
OH + CHF2CHFCF3 → products (HFC-236ea)	251-380	9.4×10 ⁻¹³	1550	5.2×10-15	1.2	200	<u>E22</u>		
$OH + CF_3CH_2CF_3 \rightarrow CF_3CHCF_3 + H_2O$ (HFC-236fa)	251-413	1.45×10-12	2500	3.3×10-16	1.15	150	<u>E23</u>		
		10.10.11	4000	1.7×10.15	1 15	75	E24		

Uncertainty in laboratory measurements contributes to overall metric uncertainty

Data Evaluation

Proposed Replacements

Proposed Replacements

R-316c, 1,2- $C_4Cl_2F_6$ (*E*,*Z*) CFC

NOAA Laboratory Studies

- * Negligible OH reactivity
- * $k(O(^{1}D) = 1.6 \times 10^{-10} \text{ cm}^{3} \text{ s}^{-1}$

Reactive yield = 0.88 ± 0.02

- * 100% Photodissociation (@ 193 nm)
- * c-C₄F₆ Photolysis and reaction product

Isomers have different UV absorption spectra

Photolysis is primary loss process

Removed in the Stratosphere 2-D model calculations (NASA/Goddard)

	(E)	(Z)
Lifetime (years)	75	114
ODP	0.45	0.54

Long-lived ODSs

Proposed Replacements

R-316c, **1**,**2**-C₄Cl₂F₆ (*E*,*Z*) CFC

NOAA Laboratory Studies

 $\begin{array}{ccc} (E) & (Z) \\ \mathrm{GWP}_{100} & 4160 & 5400 \end{array}$

Potent Greenhouse Gases

Removed from consideration

Timely laboratory studies provide industry and policy relevant information

Data Evaluation

Proposed Replacements

Kigali Amendment to the Montreal Protocol

Group	Substance	Number of isomers	Ozone-Depleting	100-Year Global	
			Potential*	warming Potentiai***	
Group I					
	HCEC.21**	1	0.04	151	
	HCEC_22**	1	0.055	191	
	HCFC-22	1	0.035	1010	
	HCFC-31	1	0.02		
	HCFC-121	2	0.01-0.04		
	HCFC-122	3	0.02-0.08		
C2HF3CI2	HCFC-123	3	0.02-0.06		
CHCI2CF3	HCFC-123**	-	0.02	77	
C2HF4CI	HCFC-124	2	0.02-0.04		
CHFCICF3	HCFC-124**	-	0.022	609	
C2H2FCI3	HCFC-131	3	0.007-0.05		
C2H2F2Cl2	HCFC-132	4	0.008-0.05		
C2H2F3Cl	HCFC-133	3	0.02-0.06		
C2H3FCl2	HCFC-141	3	0.005-0.07		
CH ₃ CFCl ₂	HCFC-141b**	-	0.11	725	
C2H3F2Cl	HCFC-142	3	0.008-0.07		
CH ₃ CF ₂ Cl	HCFC-142b**	-	0.065	2310	
C2H4FCI	HCFC-151	2	0.003-0.005		
C3HFCl6	HCFC-221	5	0.015-0.07		
C3HF2CI5	HCFC-222	9	0.01-0.09		
C3HF3Cl4	HCFC-223	12	0.01-0.08		
C3HF4Cl3	HCFC-224	12	0.01-0.09		
C3HF5Cl2	HCFC-225	9	0.02-0.07		
CF ₃ CF ₂ CHCl ₂	HCFC-225ca**	-	0.025	122	
CF2CICF2CHCIF	HCFC-225cb**	-	0.033	595	
C3HF6Cl	HCFC-226	5	0.02-0.10		
C3H2FCI5	HCFC-231	9	0.05-0.09		
C3H2F2Cl4	HCFC-232	16	0.008-0.10		
C3H2F3Cl3	HCFC-233	18	0.007-0.23		
C3H2F4Cl2	HCFC-234	16	0.01-0.28		
C3H2F5Cl	HCFC-235	9	0.03-0.52		
C3H3FCl4	HCFC-241	12	0.004-0.09		
C3H3F2Cl3	HCFC-242	18	0.005-0.13		
C3H3F3Cl2	HCFC-243	18	0.007-0.12		
C3H3F4Cl	HCFC-244	12	0.009-0.14		
C3H4FCl3	HCFC-251	12	0.001-0.01		
C3H4F2Cl2	HCEC-252	16	0.005-0.04		
C3H4F3Cl	HCEC-253	12	0.003-0.03		
CaHaECla	HCEC-261	9	0.002-0.02		
CaHsE2Cl	HCFC-262	9	0.002-0.02		
	HCFC-271	5	0.001-0.03		
Corrior CI		2	V. N/1 V.V.1		

GWPs for HCFCs

274 Controlled HCFCs Isomers are unique substances

 8 HCFCs have GWPs derived from experimental laboratory measurements *Atmospheric reactivity (lifetime) Infrared absorption spectrum (RE)*

NOAA Study

Determine GWPs missing in Annex C

- Atmospheric Lifetimes
- Radiative Efficiences (RE)
- Global Warming Potentials (GWPs)

Papanastasiou et al. (2017) (in prep)

NOAA Study

Reliable methods needed to estimate τ and GWP in the absence of experimental data

Atmospheric Lifetime (τ)

$$\frac{1}{\tau} = \frac{1}{\tau_{OH}} + \frac{1}{\tau_{O(^1D)}} + \frac{1}{\tau_{UV}}$$

OH radical reaction Predominant loss process for HCFCs

OH reaction rate coefficient

- Structure Activity Relationship (SAR): DeMore (1996) Estimated uncertainty: 20-30%
- Lifetime relative to CH₃CCl₃

$$\tau_{\rm OH}^{\rm HCFC} = \frac{k_{\rm CH3CCl3}(272 \text{ K})}{k_{HCFC}(272 \text{ K})} \tau_{\rm OH}^{\rm CH3CCl3}$$

O(¹D) rate coefficient and lifetime

- Trends in reactivity: Baasandorj et al. (2013) (NOAA)
- Lifetimes: comparison with similar compounds, SPARC (2013)

UV photolysis lifetime

- Estimate based on HCFC chlorine content and distribution
- Comparison with 2-D model lifetimes: SPARC (2013)

NOAA Study

Reliable methods needed to estimate τ and GWP in the absence of experimental data

Global Warming Potential (GWP)

$$GWP(T) = \frac{RE(\tau) \tau [1 - \exp(-T/\tau)]}{M_i Int RF_{CO_2}(T)}$$

Estimating Infrared Absorption Spectra and RE

Theoretical methods used to calculate infrared absorption spectra DFT: B3LYP/6-31G(2df,p); 50-100 hours CPU time per molecule

Empirical method used to calculate RE Hodnebrog et al. (2013)

- Isomers have unique infrared absorption spectra Molecular geometry influences spectrum
- Strongest bands due to C-F stretches (~1000-1200 cm⁻¹) Molecular geometry determines exact frequency
- Experimental spectra typically limited to >500 cm⁻¹ region Theoretical calculations enable evaluation of low-frequency region

Good agreement between experimental and calculated spectra

Reliable RE determination ($\pm \sim 15\%$)

NOAA Study

Molecular geometry (isomeric form) influences OH reactivity (lifetime), RE, and GWP

Consider on a molecule-by-molecule basis

GWP Estimated Uncertainty (*this work*)

~50% (<1 year lifetime) ~35% (>2 year lifetime)

Lifetime~25%RE<30% (depends on lifetime adjustment)</td>

* Reliable GWP determinations

- * Protocol relevant GWPs
- * Comparable to uncertainty for "known" compounds

Careful laboratory studies could reduce GWP uncertainty from input parameters to ~20% (>2 year lifetime)

Acknowledgments

NOAA Colleagues

- M. Baasandorj F. Bernard M. Davis K. Feierabend D. Fahey T. Gierczak M. Gilles M. Harwood C. Howard E. Jimenez A. Jubb S. McKeen R. Mauldin M. McGillen
- A. Mellouki
 J. Orlando
 V. Papadimitriou
 D. Papanastasiou
 R. Portmann
 B. Rajakumar
 A. Ravishankara
 A.-M. Schmoltner
 S. Solomon
 R. Talukdar
 G. Vaghjiani
 R. Warren
 R. Yokelson

and others !

CFCs HCFCs HFCs

NASA Data Panel (2015)

Burkholder, Sander, Abbatt, Barker, Huie, Kolb, Kurylo, Orkin, Wilmouth, Wine and past panel members

Others !!!

Blank